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ABSTRACT

The investigation of array antenna electro-
optical signal processors continues with emphasis
placed on the development of a wide-band solid
light modulator,

The light modulator bandwidth and the trans-
fer characteristics between input voltage and
peak phase deviation of 1light wave front are
obtained experimentally for fused silica light
modulators operating in the compression mode.
Transfer characteristics are found to be 1linear
as predicted by theory, and bandwidth is found
to be greater than 50 per cent of resonant trans-

ducer frequency.

Electromechanical cross coupling and ultra-
sonic beam broadening are investigated for both
the shear and compression modes by means of
Schlieren techniques. Results show that in a
multi-channel configuration, adjacent 1light mod-
ulator channels may be spaced by one transducer
width without adverse effects,

First order diffraction patterns are ob-
tained for the fused silica light modulator. Re-
sults are consistent with theory showing that
no optical distortion is introduced by ultrasonic
propagation in fused silica,

p-8/321 =ids
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I. INTRODUCTION

In order to extend the aperture-bandwidth capability of
real-time electro-optical processors for array antennas, the
Electronics Research Laboratories of Columbia University has
been engaged in the development of a wide-band Debye-Sears
light modulator. This research program has as its initial
goal the development of a solid light modulator operating at
a2 100-MHz center frequency with at leas( a 40-MHz bandwidth,

This report presents a continuation of the theoretical
and experimental investigations into the fundamental operating
characteristics of wide-band Debye-Sears light modulators
employing so0lid media, The theoretical and experimental re-
search results reported here, together with pPrevious re-
ports,*’2 ghow that:

(1) The relationship between input voltage and the re-
sulting peak phase deviation of the light wave front is lin-
ear as predicted by theory.

(2) Light modulator bandwidths which are 50 per cent of
the resonant frequency of the ultrasonic transducer are
easily achieved,

(3) Electromechanical cross coupling and ultrasonic
beam-broadening effects will not preclude a multi-channel
light-modulator configuration with spacings of the order of
One transducer width,

(4) uvltrasonic pPropagation in a solid does not intro-
duce optical distortion, The results which have been ob-

1

For numbered references, see Sec. IV,

P-8/321 -
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tained are equivalent to those obtained with liquid light
modulators,

These theoretical and experimental results indicate the
feasibility of the solid wide-band light modulator. Future
research efforts will be directed towards the practical engi-
neering problems associated with the use of fused silica
light modulators in electro-optical processing for array an-
tennas; this includes: expurimental determination of the
optimal transducer depth to minimize the input electrical
power, further investigation of transducer heating effects
which Lave beea pPreviously reported, and investigation of the

phaee coherence properties of piezoelectric quartz trans-
ducers,
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II. OPERATING CHARACTERISTICS OF FUSED SILICA LIGHT MODULATORS

£ The material chosen as the light modulator medium in

this research has been fused silica. This material, through
its use in the manufacture of acoustic delay lines, has been
shown to possess low acoustic loss at high frequencies and is
capable of maintaining wide acoustic bandwidths. In addition,
it is especially applicable for use as a 1ight modulator me-
dium since it is a transparent substance which can be polished
to a high degree of optical flatness.

| This section presents the results of experimental inves-
tigations into those operating characteristics of fused silica

H spatial light modulators which are relevant to their appli-

i cation to electro-optical array antenna processing. The

specific considerations are:

i. The transfer characteristics between peak input
voltage and the resulting peak phase deviation of
the light wave front.

2. The bandwidth of the light modulator.

3. Ultrasonic beam-spreading and cross-channel coupling
characteristics,

4. The ability of the solid light modulator to produce
a first order diffraction pattern as predicted by

theory.
A, MEASUREMENT OF PHASE MODULATION AND LIGHT MODULATION
BANDWIDTH

The previous report?® presented the experimental deter-
mination of the bandwidth characteristics and tae relationship

P-8/321 L
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II. O'ERATING CHARACTERISTICS OF FUSED SILICA LIGHT MODULATORS

R The material chosen as the light modulator medium in
this research has been fused silica. This material, through
its use in the manufacture of acoustic delay lines, has been
shown to possess low acoustic loss at high frequencies and is
capable of maintaining wide acoustic bandwidths. In addition,
it is especially applicable for use as a light modulator me~
dium since it is a transparent substance which can be polieghed
to a high degree of optical flatness.

This section presents the results of experimental inves-
tigations into those operating characteristics of fused silica
spatial light modulators which 2re relevant to their appli-
cation to electro-optical array antenna processing, The
specific considerations are:

1. The transfer characteristics between pealk: input
voltage and the resulting peak phase deviation of
the light wave front.

2. The bandwidth of the light modulator.

3. Ultrasonic beam-spreading and cross-charnel coupling
characteristics,

4., The ability of the solid light modulator to produce
a first order diffraction pattern as predicted by
theory.

A, MEASUREMENT OF PHASE MODULATION ANY LIGHT MODULATION
BANDWIDTH

The previous report® presented the experimental deter-—
mination of the bandwidth characteristics and the relationship
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between electrical excitation and spatial phase modulation

of the light wave-front for fused silica light modulators
. oper2ting in the shear mode, We now present similar measure-
ments for light modulators employing the compression mode of
ultrasonic propagation. These results were obtained with an
X-cut pieznelectric crystal which was bonded to a fused silica
blank at CUERL,

The experimental set-up for obtaining these measurements
is shown in Fig., 1. The Photomultiplier produces a current,
proportional to the output light int:asity at the location of
the 5u scanning slit, which is passed through a load resistor ;
RL’ Thus, in the actual measurement procedure, a voltage V
is measured across RL which is proportional to the light in-
tensity at the position of the scanning slit

In order to be of use in electro-optical array antenna
processing, the light modulator must be capable of maintaining
a bandwidth which is at least 50 per cent of the resonant
transducer frequency. The bandpass characteristics were de-

. termined by measuring the peak first order light intensity
as the frequzncy of the input electrical signal was varied,

. with the input signal amplitude being held at a fixed value,
It was found that, although a 100-MHz piezoelectric crystal
was used, the bonding process in this cise lowered the trans-
ducers resonant frequency to approximately 85 MHz. The band-
width, however, is seen in Fig, 2 to be approximately 55 MHz
which, using the 50 Per cent bandwidth criterion, is somewhat
more than sufficient for electro-optical pProcessing,

In measuring the relationship between V and w » We make
use of the fact that, under the condition thdt Vi ( 0.2 ra-
dlani the ratio of first crder to zero order llght intensity?®

is -E—- . Thus if the detector output voltages which are
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FIG. 2 BANDPASS CHARACTERISTICS OF FUSED SILICA LIGHT-MODULATOR
EMPLOYING ULTRASONIC COMPRESSION MODE
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measured when the scanning slit is positioned at the center

of the zero order and first order diffraction fringes are,
respectively, V6 and Vl, then:

2
W oY
4 v,

from which Wm may be determined,

The theoretical relationship between wm and Vh for
the compression mode of ultrasonic Propagation in fused sil-
ica (assuming polarization of the incident light perpendicu-

lar to the direction of ultrasonic propagation) has been
shown to be:?l

ZnLngpk
wm = AE Vh

where:
no = unstressed refractive index

L = active transducer depth (dimension of back
electrcde along light path)

AN = light wavelength

p = Neumann's "p" constant
E = Young's modulus

k

= electromechanical coupling coefficient of
Piezoelecitric transducer.

It is seen therefore that, theoretically, a linear re-

lationship exists between {h and Vm. Although the average
values of the above Physical constants have been measure i to

P-§/321
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sufficient accuracy to be useful in predicting approximate
voltage requirements, their pPrecise values will depend on the
exact composition of the individual piece of fused silica,

In addition, the available value of the photoelastic constant
P, which aside from exhibiting possib’e variations with the
composition of the medium is also a function of light wave-
length, has been measured by Primak and Post* for a 0.5890-u
light source. 1In these experiments however, the light source
wavelength was 0.6328 . It is therefore possible to obtain
only an approximate theoretical value of the constant of pro-
portionality between wm and Vh.

The experimental measurements of wm as a function of
Vh are presented in Fig. 3. Included in the same figure is
the theoretical relationship which was obtained using the
available values of the relevant physical constants, It is
seen that the experimentally determined relationship between
wm and Vm is linear within experimental error, and that the
input voltage requirements for specific values of peak phase
deviation can be approximately predicted,

B. ULTRASONIC BEAM BROADENING AND CROSS CHANNEL COUPLING

It has been shown® that the maximum number of light
modulator channels which may be fitted into an optical aper-
ture of width W is given by

N = g'g (11-1)

where:
f = frequency of electrical signal exciting piezo-
electric transducer
S = ultrasonic velocity of propagation
D = aperture length along the direction of sonic
pPropagation,
P-53/321 -8-
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FIG. 3 PEAK PHASE MODULATION vs. PEAK INPUT VOLTAGE FOR A FUSED
SILICA LIGHT-MODUL ATOR EMPLOYING COMPRESSION MODE TRANSDUCER
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This relationship has been derived through consideration
of ultrasonic diffraction effects, It has been shownS that,
for lomgitudinaf waves, ultrasonic Propagation in a solid
follows approximately the same laws as electromagnetic praop-

4 ] agation in space., Por this analysis it hasg been assumed?®
that, due to ultrasonic diffraction, the beam actually spreads
| as is shown in Fig, 4, The far field spreading angle 8, is
given by:

where b = width of transducer and the spreading width W
(Fig. 4) is thus;

w.=D0_ = ——=2

s s b

It is seen therefore that the maximum number of channels
which may be fitted into any given aperture of width W is L
limited by the transducer spacing which must be such that any
"cross talk" between adjacent channels due to ultrasonic *
beam spreading is eliminated, oOne Ccriterion which has been
employed successfully® is to limit the number of channels
such that; .

N . (11-2)

and then to separate each of the adjacent channels by a trans-
ducer width such that:

W= 2bN . (11-3)

Thus Eq. II-1 is obtained from II-2 and 1I-3,

P18/321
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This latter restriction (Bq. (11-3)) was found to be nec-

coupling effects which may exist at the transducers,

The relationship expressed in Eq. (II-1) is now verified
for fused silica light modulators by the experimental results
Presented in Pigs, 5 a,b,c and 6 a,b,c which are Schlieren
photuographs of ultrasonic shear compression waves, respec-
tively,

In Pigs, 5a and 6a, the Photographs, which were delib-
erately Overexposed, were obtained with a 75-MHz signal simyl-
taneously exciting two transducers which were 3-mm wide and
Seéparate by a distance of 2 mm, It is seen that, for both
the shear and compression modes, the beams remain sufficiently
Collimated to avoid "cross talk," 1In examining electro-me-
chanical cross Channel coupling, a photograph was taken of
each configuration using a low excitation and a l-second ox-~
posure (Figs. 5b and 6b). One electrical connection was then
removed, leaving the back electrode in Place, and a photo-~
graph was taken using an electrical excitation 1C times as
large with a 3-second exposure {Pigs. 5c and 6c). Now it
is evident that any deleterious electro-mechanical Cross
coupling would cause a spurious signal to be generated at the
unexcited electrode, Since, however, (by Figs. 5b and 6b) it
is possible to observe an acoustic wave resulting from an
excitation one teanth of that which produced Figs. 5¢ and 6c,
then, by linearity of Wm and VQ, any diffracted light in-
tensity resulting from electro-mechanical Cross coupling is
verified to be supressed by more than 20 db,

C. MEASUREMENT OF FIRST ORDER LIGHT INTENSITY DISTRIBUTION
s = SIRIBUTION

One of the essential requirements of the light modulators
used in the electro-optical array antenna processor is that

P-8/321 -12-
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DIRECTION OF ULTRASOMNIC PROPAGATION ——=

Sa _ BOTH TRANSDUCERS EXCITED
INPUT VOLTAGE = V),
EXPOSURE TIME: T

Sb _ BOTH TRANSDUCERS EXCITED
INPUT VOLTAGE = v, /10
EXPOSURE TIME = T

5C _ ONE TRANSDUCER EXCITED
INPUT VOLTAGE = Vin
EXPOSURE TIME z 3T

8IOH-321-0140
A-321-5-03i7

FI6. 5 SHEAR MODE TRANSDUCERS — EXPERIMENTAL SCHLIEREN
PHOTCGRAPHIC STUDY OF ULTRASONIC BEAM BROADENING
AND ELECTRO - MECHANICAL CROSS - COUPLING .
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DIRECTION OF ULTRASONIC PROPAGATION ——e

6c _ BOTH TRANSDUCERS ExciTep
INPUT VOLTAGE : v,
EXPOSURE TIME = T

&b _ BOTH TRAWSDUCERS ExciTED
INPUT YOLTAGE = v,, /10
- EXPOSURE TIME = T

8¢ _ one TRANSDUCER EXCITED
INPUT VOLTASE = v;,
EXPOSURE TWME = 37T

BIOH- 321-0139
A-321-S-0318

FIG. 6 COMPRESSION MODE TRANSDUCERS — EXPERIMENTAL SCHLIEREN
’ PHOTOGRAPHIC STUDY OF ULTRASONIC BEAM BROADENING
AND ELECTRO - MECHANICAL CROSS - COUPLING .
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they introduce no optical distortion resulting from ultra-
sonic propagation in the light modulator medium, i.e,,

the acoustic wave must act as a pure diffraction grating

Producing a first order diffraction Pattern consistent with

the aperture dimensions and the frequency of excitation,

For an aperture of length D (dimensicn along directinon of

sonic propagation) and an electrical excitation of freguency

f, the first ordgr diffracted light intensity as a function

of the ontput variable n should ke proportional tos:

-
sin 7D(u - fs)

mD{u - fs)

£f = f:-= spatial freguency (cycles per meter)
]

sonic velocity .

The first order intensity therefore is, theoretically, a r
replica of the zero order pattern, with its peak occurring

uzfs 3

The cutput variable nu is given by:
Rl - "

x
S5 AP

x‘1 = linear displacement of first order peak inten-
sity

¥ r-8/321 =15~
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A = light wavelength = 6328 x 10~

F = focal length of integrating lens = 1 m

In this measurement:
f = 70 MHz

§ = sonic velocity 5968 m/sec

and the theoretical displacenient of peak first order inten-
sity is therefore:

xl = 7.42 mm .
Using the Scanning apparatus shown schematically in
Fig, 7, the first order light intensity distribution was re-
corded (Fig, 8) using a phase deviation of wm = 0.2 radians,
The aperture dimensions in this case were:

D

i

30 mm (length of aperture along dimension of sonic
propagation)

b =4 mm (width of aperture = width of transducer),

Since the direction of sonic propagation is in the x

direction, only the output distribution as a

function of the
output variable uy is of interest,

The location of peak

first order intensity was found experimentally to be:

3

xl = 7.5 mm |,

This distribution may be compared with that of the zero
order as shown in Fig. 9. It is seen that the light inten-
sity at the first nulls is 26 db below the peak in the zero

order pattern as compared with approximately 22 db below peak
intensity in the first order,

introduced by the integrating 1

This may be caused by errors
ens which must operate off its

P-8/321 -16- |
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optic axis in producing the first order distribution., I
general, however,

n
it is seen that the first order diffraction
pattern is a nearly ideal replica cof the zero order,

-20-
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I1I, MEASQB;EE!Z OF SCATTERED LIGHT INTENSITY

An optical aperture of height D will Produce a zero order
diffraction pattern whose light distribution as a function
Of the output variable u will be given by (Fig. 10):

k_sin 7Dy )2
Io(u) = ( fiDu )

where k = constant.

Thus the ideal light level, as a function of u, can be
defined as

L(u) = (%)2 .

It is seen that L(u) is the envelope of the side lobes
of Io(u).

In general, the measured light level will be somewhat
higher then that given by L(u) resulting from light which
is scattered because of imperfections in the lens surfaces,

1 Since scattered light tends to obscure the location of peak
first order intensity, thuys decreasing the dynamic range of
the system, it is of course dezirable to keep the light level

interest, A measurement of the Scattered light in thig op-~-
tival system is bresented in Fig, 11 along with the theoret-
ical level. The output region of interest is noted in Fig, 11,
It is seen that the scattered lightllevel in this region is
approximately 5 db abcve the theoretical value,

P-8/321 21~
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FIG. 10 IDEAL ZERO ORDER LIGHT INTENSITY DISTRIBUTION FOR APERTURE
OF LENGTH D
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